We are the hot sales bipolar membrane electrodialyzer BPED manufacturer in China

acid-base-generator

The bipolar ion exchange membrane electrodialyzer is composed of a bipolar membrane, and the anion membrane and the cation membrane to form acid, alkali, and salt chambers (two chambers or three chambers) in different combinations.
The anions pass through the anion exchange membrane and combine with the H+ ions produced by the bipolar membrane to generate acid. The cations pass through the cation exchange membrane and combine with the OH-ions produced by the bipolar membrane to generate alkali. The process is equivalent to the reverse reaction process of the neutralization reaction. The bipolar membrane electrodialysis is a new type of electrodialysis that introduces bipolar membrane on the basis of electrodialysis, and combines various configurations of cathode and/or cation membrane. Its role is to convert salt solutions into acids and bases.
Under the action of an external reverse DC electric field, the bipolar membrane dissociates H 2 O molecules into H+ and OH- under the action of a catalyst, and migrates into the solution on both sides of the membrane through the anode and cathode layers respectively. The decrease of H+ and OH concentration in the catalytic layer makes the hydrolysis reaction continue to proceed. The bipolar membrane is equivalent to a hydrolysis generator that produces H+ and OH ions.
Bipolar membrane electrodialysis is a new type of electrodialysis formed by introducing a bipolar membrane on the basis of electrodialysis and combining various configurations of the anion membrane and/or the anode membrane. Unlike the concentrated desalination function of conventional electrodialysis, its function is to convert a salt solution into an acid and a base. Under the action of a reverse DC electric field, the H2O molecules in the catalytic layer are dissociated into H+ and OH- under the action of a catalyst, and migrated through the positive and negative layers to the host solution on both sides of the membrane, respectively. The lowering of the H+ and OH- concentrations causes the hydrolysis to proceed continuously. Simply put, a bipolar membrane is equivalent to a hydrolysis generator that produces H+ and OH-ions.
The bipolar membrane, the combination of the anion membrane and the yang membrane constitute a three-chamber of acid, alkali and salt. The anion of the salt passes through the anion membrane and combines with the H+ ion generated by the bipolar membrane to form an acid. On the other hand, the cation passes through the cation exchange membrane and the double The OH-ion generated by the polar membrane combines to form a base, and the process is equivalent to the reverse reaction process of the neutralization reaction.

Characteristics of Three Chambers of Bipolar Electrodialyzer BPED

A. Acid side: 0--50g/L
B. Alkaline side: 0--80g/L

Applications Area:

1, Preparation of acid and bases from inorganic salts (such as sodium sulfate, sodium chloride, lithium chloride, etc.)
2, Production of organic acids (such as gluconic acid, lactic acid, malic acid, succinic acid, etc.)
3, Production of organic bases (such as ornithine, lysine, arginine, histidine, etc.)

Inlet water requirement of Bipolar ion exchange membrane electrodialysis:

1) water temperature : 5-40 degrees Celsius
2) oxygen consumption: < 20mg/L , It cannot contain aromatic hydrocarbons
3) SS: < 1mg/L
4) Fe: < 0.3mg/L
5) Mn: < 0.1mg/L
6) SDI: < 3
7) Mg, Ca < 1mg/L
8) turbidity < 1NTU
9) SiO2 < 1mg/L

Performance Introduction of SYABCM8040-100

200 pieces of bipolar ion exchange membrane,anion-exchange membrane and cation-exchange membrane for each.
The effective area of each membrane is 50 m2.
Current Density: 500A/m2
Under standard operating conditions, the conversion efficiency of the membrane stack is as follows(Other salts can be calculated according to the corresponding equivalent molar mass):

Name 
Reaction Formula
Processing     Capacity 
Power    Consumption
NaCl
H2O+NaCl→HCl+NaOH
15
1.5
Na2So4
Na2SO4+H2O→H2SO4+NaOH
18.2
1.2
LiCl
LiCl+H2O→LiOH+HCl
10.9
2.1
Li2SO4
Li2SO4+H2O→H2SO4+LiOH
14.1
1.6
NaNO3
NaNO3+H2O→HNO3+NaOH
21.8
1.1
Usually the acid-base equivalent concentration is 1N, and the acid-base concentration can be further increased by changing the operating conditions.





Our Mission

Continuously provide the Ion-Exchange Membrane with lower energy consumption and excellent performance for Green Energy and Chlor-Alkali Industries
Continuously improve the technology of environmentally friendly

Contact Us

 Dongfeng Street, Weifang Shandong China

 (0086) 536-821-6345